Proteolytic maturation of replicase polyprotein pp1a by the nsp4 main proteinase is essential for equine arteritis virus replication and includes internal cleavage of nsp7.
نویسندگان
چکیده
The positive-stranded RNA genome of the arterivirus Equine arteritis virus (order Nidovirales) encodes the partially overlapping replicase polyproteins pp1a (1727 aa) and pp1ab (3175 aa). Previously, three viral proteinases were reported to cleave these large polyproteins into 12 non-structural proteins (nsps). The chymotrypsin-like viral main proteinase residing in nsp4 is responsible for eight of these cleavages. Processing of the C-terminal half of pp1a (the nsp3-8 region) was postulated to occur following either of two alternative proteolytic pathways (the 'major' and 'minor' pathways). Here, the importance of these two pathways was investigated by using a reverse-genetics system and inactivating each of the cleavage sites by site-directed mutagenesis. For all of these pp1a cleavage sites, mutations that prevented cleavage by the nsp4 proteinase were found to block or severely inhibit EAV RNA synthesis. Furthermore, our studies identified a novel nsp4 cleavage site (Glu-1575/Ala-1576) that is located within nsp7 and is conserved in arteriviruses. The N-terminal nsp7 fragment (nsp7alpha) derived from this cleavage was detected in lysates of both EAV-infected cells and cells transiently expressing pp1a. Mutagenesis of the novel cleavage site in the context of an EAV full-length cDNA clone proved to be lethal, underlining the fact that the highly regulated, nsp4-mediated processing of the C-terminal half of pp1a is a crucial event in the arterivirus life cycle.
منابع مشابه
Mutagenesis analysis of the nsp4 main proteinase reveals determinants of arterivirus replicase polyprotein autoprocessing.
Nonstructural protein 4 (nsp4; 204 amino acids) is the chymotrypsin-like serine main proteinase of the arterivirus Equine arteritis virus (order Nidovirales), which controls the maturation of the replicase complex. nsp4 includes a unique C-terminal domain (CTD) connected to the catalytic two-beta-barrel structure by the poorly conserved residues 155 and 156. This dipeptide might be part of a hi...
متن کاملHuman coronavirus 229E papain-like proteases have overlapping specificities but distinct functions in viral replication.
Expression of the exceptionally large RNA genomes of CoVs involves multiple regulatory mechanisms, including extensive proteolytic processing of the large replicase polyproteins, pp1a and pp1ab, by two types of cysteine proteases: the chymotrypsin-like main protease and papain-like accessory proteases (PLpros). Here, we characterized the proteolytic processing of the human coronavirus 229E (HCo...
متن کاملPolyprotein Processing as a Determinant for In Vitro Activity of Semliki Forest Virus Replicase
Semliki Forest virus (SFV) is an arthropod-borne alphavirus that induces membrane invaginations (spherules) in host cells. These harbor the viral replication complexes (RC) that synthesize viral RNA. Alphaviruses have four replicase or nonstructural proteins (nsPs), nsP1-4, expressed as polyprotein P1234. An early RC, which synthesizes minus-strand RNA, is formed by the polyprotein P123 and the...
متن کاملNon-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex.
The replicase polyproteins of equine arteritis virus (EAV; family Arteriviridae, order Nidovirales) are processed by three viral proteases to yield 12 non-structural proteins (nsps). The nsp2 and nsp3 cleavage products have previously been found to interact, a property that allows nsp2 to act as a co-factor in the processing of the downstream part of the polyprotein by the nsp4 protease. Remark...
متن کاملTemplate-dependent initiation of Sindbis virus RNA replication in vitro.
Recent insights into the early events in Sindbis virus RNA replication suggest a requirement for either the P123 or P23 polyprotein, as well as mature nsP4, the RNA-dependent RNA polymerase, for initiation of minus-strand RNA synthesis. Based on this observation, we have succeeded in reconstituting an in vitro system for template-dependent initiation of SIN RNA replication. Extracts were isolat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of general virology
دوره 87 Pt 12 شماره
صفحات -
تاریخ انتشار 2006